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The oxidation of (E)-propene-I-d, to acrolein over bismuth molybdate, copper oxide, and rho- 
dium catalysts was studied to determine if the reaction proceeded with (Z)-(E) randomization of 
the deuterium stereochemistry. Over Bi?MoZ09 and BizMoOh, (E)-acrolein-3-d, : (Z)-acrolein-3- 
d, : acrolein-l-d, was I : I ‘I I consistent with a a-ally1 intermediate which rapidly converts between 
two equivalent forms (*CHD-CH=CH> + +- CHD=CH-*CH:). With copper oxide, (E)-acrolein- 
3-d, : (Z)-acrolein-3-d, : acrolein-l-d, . was I : I : 1.6. This points to a discrimination isotope effect 
consistent with a o-ally1 intermediate without interconversion of equivalent forms. Over a Rhicu- 
AlzOz catalyst, (I$-acrolein-3-d, : (a-acrolein-3-d, : acrolein-l-d, was I : 0.93 : 0.89. This is consis- 
tent with an ally1 intermediate along with a second minor nonallylic pathway which does not 
equilibrate the terminal carbon atoms. One or both of these processes occurred with some retention 
of the (I?)-deuterium stereochemistry in the acrolein-3-d, Over an unsupported Rh catalyst, (E)- 
acrolein-3-d, : (Z)-acrolein-3-d, : acrolein-l-d, was I : 0.68 : 0.85. Only the allylic pathway is evident 
and the reaction orocess occurs with incomplete randomization (76 + 10%) of the LE-deuterium 
stereochemistry in the acrolein-3-d,. 

INTRODUCTION 

The catalytic oxidation of propene to 
acrolein has been studied from many per- 
spectives (I). For a number of catalysts, it 
has been established that the reaction pro- 
ceeds through a symmetric allylic interme- 
diate which subsequently loses the second 
hydrogen from either of the equivalent ter- 
minal carbon atoms. This has been deter- 
mined from carbon or deuterium labeling 
experiments which were reviewed recently 
(2). 

The deuterium results over bismuth mo- 
lybdate (la-d, 3), copper oxide (3), and 
rhodium (4) are noteworthy since they are 
related to the catalyst systems investigated 
in this paper. A selection of these results 
are listed in Table 1. Over the oxide cata- 
lysts, an isotope effect was observed in 
both hydrogen abstraction steps giving rise 
to nonequal amounts of dr and d2 acroleins 
from a CHzCHCDz ally1 intermediate. 
However, over supported Rh, the second 
hydrogen abstraction did not exhibit any 

isotope effect and a minor, nonallylic path- 
way whereby the methyl group was con- 
verted to the aldehyde was also observed. 
The recent work with the bismuth molyb- 
date and rhodium systems has led to the 
view that oxygen incorporation in the al- 
lylic intermediate occurs prior to the loss of 
the second hydrogen. One possibility is for 
the n-ally1 intermediate to convert to a c- 
ally1 intermediate perhaps similar to an 
-0-CHZ-CH=CHz intermediate de- 
rived from ally1 alcohol (2~). 

One aspect of the allylic intermediate has 
interested us, viz., whether a deuterated 
propene (PR) labeled stereospecifically (z) 
or (E’) would retain this geometry in the in- 
termediate through the subsequent oxida- 
tion to acrolein (ACR). An isolated ally1 
radical has a bent C-C-C framework (like 
PR and ACR) stabilized by its r interaction. 
In fact the barrier to rotation for (Z)- and 
(I?‘)-allyl-l-d1 radicals has recently been de- 
termined as 15.7 kcal/mol (5). This barrier 
could be further raised due to interaction 
with the catalyst surface. For certain reac- 
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tion conditions, a o-ally1 intermediate can 
also convert to acrolein with some ste- 
reoselectivity (see below). Consequently, it 
is conceivable that the overall oxidation of 
(Z)- or Q-propene-l-d, might occur with 
some retention of the deuterium stereo- 
chemistry relative to the Cx framework. 

A stereolabeled process incorporating o- 
and r-ally1 intermediates is explored in the 
reaction network described in Scheme 1 
starting with (E)-PR-l-d1 . If complete ran- 
domization occurs (for example, kE s=- kALA 
or kI\LA % kH) then equal amounts of the E 
and Z isomers of ACR-3-dl will result. If no 
stereorandomization occurs (kE = kiLA = 
kALE = 0) then the relative amounts of E 
and Z isomers will be in the ratio of 1 : 0. 
Partial randomization, i.e., unequal (non- 
zero) amounts of the E and Z products, 
could also occur. The relative amounts of 
the ACR-l-d1 species can also provide use- 

TABLE 1 

Oxidation of Deuterated Propene to Acrolein 

Catalyst Propenea Acrolein 
@lb 

Reference 

do d, 4 

cu,o 3-d, 35 65 (3a) 
l-d,c 16 84 (3b) 

B12M0209 3-d, 33 67 @a) 
l-d,c 20 80 (3b) 
1,1-d* 35 65 (la, 4 
3,3,3-d, 34 66 (la) 

BiZMojOIZ 1, l-d2 30 70 (ICI 
3,3,3-d, 34 66 (lb) 

Rh/AIZO, 1,1-d2 42 58 (4) 
3,3,3-d, 52 48 (4 

L1 Any deuterium label at C-2 which has no mecha- 
nistic significance has been ignored. 

b Only the do,d, or d, ,d2 species are listed and nor- 
malized to 100%. 

ful mechanistic information, for example, c Mainly the Q isomer. 
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regarding the magnitudes of the above rate were supplied by Dr. Wilbur Swanson, Cli- 
constants compared to ku and kD or the ex- max Molybdenum Company, Ann Arbor, 
istence of nonallylic pathways which do not Michigan. Pretreatment consisted of air ox- 
equilibrate the terminal carbon atoms. idation at 500°C for l- 2 h. 

The microwave rotational transitions of 
all the di species of PR and ACR have been 
assigned (6, 7), so the process of random- 
ization can be followed by their MW spec- 
tra. The analysis consists of measuring the 
relative intensities of suitable transitions 
for the various species. This provides inten- 
sity ratios which can be readily converted 
into molar ratios. Measurement of the 
amount of ACR-do would also provide in- 
sight on an isotope effect but this was not 
followed. It was difficult to completely iso- 
late a run with deuterated propene from the 
preceding stabilization process with normal 
propene. Moreover, information on do/d, 
ratios was initially available from the prior 
studies as noted above. 

The 4% CU~O/(Y-A1203 was prepared from 
an aqueous solution of Cu(NO& . After im- 
pregnation, it was dried in an oven for sev- 
eral days and decomposed to copper oxide 
in an air flow at 460°C for 15 h. A mixture of 
propene (10%) and N2 was passed at 300°C 
in order to enhance the formation of Cu(I) 
oxide which is the likely catalytic species. 
The unsupported copper oxide (CuZO, ~80 
mesh, Aldrich Co.) was also pretreated in 
this manner. 

METHODS 

All catalytic experiments were carried 
out in a single pass flow reactor described 
more completely elsewhere (8, 9). Reac- 
tion conditions, conversions, and selectivi- 
ties for typical experiments are listed in Ta- 
ble 2. The gas chromatographic analysis of 
the feed and effluent has been described 
(9, 10). 

The 1.5% Rh/o-A1203 catalyst has been 
described previously (4, II). The unsup- 
ported Rh metal was prepared from 
Rh(NO& . 2Hz0 (12). Surface areas for 
these catalysts were too low to be mea- 
sured by conventional hydrogen chemi- 
sorption techniques. Pretreatment of each 
consisted of Hz reduction for several hours 
at 300-350°C for several hours following 
which these systems behaved similarly to 
the earlier study of the supported Rh cata- 
lysts (4, 11). 

The two bismuth molybdate catalysts 

Following their pretreatment each cata- 
lyst was stabilized under reaction condi- 
tions with C3Hs. The labeled PR was then 
introduced by diverting the oxidant flow 
through a U-tube containing the PR held as 

TABLE 2 

Typical Reaction Conditions and Characteristics of the Catalysts 

Bi2MoZ09 B&Moo6 1.5% Rhla-AlzOj Rh powder CuzO/~-A1,03 cu*o 

Surface area (m*/g) 
Catalyst mass (g) 
Reactant feed ratio 

C3H6 : O2 : N2 
Total flow rate 

(mumin) 
Temperature (“C) 
Total conversion of 

G-b (%I 
Selectivity to 

acrolein (%) 
Selectivity to 

acetone (%) 

0.16 0.11 0.43 
3.8 3.8 2.5 0.1 1.5 0.5 

2:4:94 2:4:94 1.5:5:93.5 1.5:5:93.5 1:2:97 1.5: 1.5:97 

60 60 60 60 60 60 
450 450 180 200 250 230 

8 5 2 0.3 2 2 

80 85 18 15 45 67 

7 7 
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a liquid at a suitable low temperature (8, 9). 
Approximately 1 mmol of labeled com- 
pound was fed and the products were col- 
lected for analysis. Repassage experiments 
with (Z)-ACR-3-d, were conducted simi- 
larly under reaction conditions with unla- 
beled PR in the feed. 

The method of analysis of the three dr- 
acroleins by microwave spectroscopy has 
been described previously (9). The relative 
amounts of the (Z)- and (E)-propene-1-di 
were similarly determined from the inten- 
sity measurements of the same transition 
for each species. Three transitions were 
used, viz., the 101-202, 1i1-2t2, and 1 i0-2,i 
(6). In analyzing the PR-d, data, no correc- 
tions were made for the small methyl tor- 
sion splitting in two (E)-PR-d1 transitions 
and the factor R needed to convert the MW 
intensity ratios into a molar ratio was set at 
1. The uncertainties in Table 2 contain 
these considerations and are sufficient to 
encompass the experimental precision in 
the measurements. The latter appears to be 
the limiting factor for the ACR-di system. 
The somewhat larger uncertainties for 
ACR-dt compared to the earlier study of 
ACR-dt (9) result from handling small (mi- 
cromolar) levels of material particularly 
over the Rh. An effort was also made to 
determine the equilibrium (E)-ACR-3-dr/ 
(Z)-ACR-3-d, ratio by reanalyzing a par- 
tially equilibrated mixture which was left in 
a glass vessel at room temperature for 6 
months. This gave 1.01(l) (E = 50.2 ? 
1.2%). 

The stereolabeled PR-I-d, was prepared 
by reacting methylacetylene and 9-BBN (9- 
borabicyclo[3.3. llnonane) in THF followed 
by CH$OOD (13). Unreacted methylacet- 
ylene was removed by reaction with 
AgN03 * NH40H and the propene was sep- 
arated by distillation. This typically pro- 
duced 75-85% Q-PR-di with the remain- 
der as PR-do . The amount of (Z)-PR-di was 
below detection limits (~2%) so no correc- 
tion for it is needed in estimating the extent 
of randomization. 

The predominantly (Z)-ACR-3-dr used in 

the control experiments was obtained by 
the oxidative dehydrogenation of (Z)-ally1 
alcohol-3-d, to (Z)-ACR-3-d, as described 
earlier (9). The actual (E)-ACR-3-d,/(Z)- 
ACR-3-d, used in repassage runs depended 
on the batch and was between 0.087 and 
0.127. Corrections were made for the (E)- 
ACR-3-d, so that the ratio in Table 3 for the 
recovered material is based on 100% (Z)- 
ACR-3-d, in the feed. 

RESULTS AND DISCUSSION 

Analytical results for the three ACR-d, 
species as well as recovered (unreacted) 
PR-l-d, are listed in Table 3 for 15 experi- 
ments. The analysis of the extent of ran- 
domization upon passage of (Z)-ACR-3-d, 
in a feed containing unlabeled PR is also 
given for 8 of the experiments. Every effort 
was made to hold conditions during the re- 
passage of (Z)-ACR-3-d, closely similar to 
the related experiment with (E)-PR- I-d, I 
However, these runs frequently were sepa- 
rated by 4-24 h whereby exact correspon- 
dence was precluded. 

In discussing these results it is helpful to 
distinguish between various processes and 
terms regarding the H and D stereo- 
chemistry. (Hereafter, the abbreviations Z, 
E, and l-d, will refer to the ACR-dI species 
unless noted.) 

Symmetrization. Equivalence of end car- 
bons as with the ally1 intermediate. 

Randomization. Equivalence of H and D 
as a result of (Z)-(E) isomerization (i.e., 
cis-trans isomerization). 

Product randomization. Equivalence of 
H and D by (Z)-(E) isomerization after de- 
velopment of the acrolein double bond. 
This could occur before desorption or as a 
consequence of a subsequent readsorption 
(as experimentally verified). Rapid product 
randomization will produce E = Z regard- 
less of the reaction process. 

Discrimination isotope effect. It is not 
possible to see a primary kinetic isotope ef- 
fect since the slow step is abstraction from 
the methyl group of (E)-Pr-l-d, . However, 
a discrimination between H and D is poten- 
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TABLE 3 

Relative Isotopic Distribution from Oxidation of (E)-Propene-l-d, or Repassage of (Z)-Acrolein-3-d, 

Run Catalyst Temp ” 
&, (“C) 

Acrolein product” Propylene recoveredh Acrolein 
repassage’ 

E Z l-d, Z4E + Z) (3-d,)i(E + z) Z/(E + z) 

1 Bi2M0209 450 8 l.OOd 1.00’ I .02’ 0.07” 0.07” 0.51” 
2 BiZMo209 450 8 1.00 1.00 1 .oo 0.07 0.07 
3 BizMoOa 450 5 1.00 1.00 1.02 0.03 0.03 
4 1.5% Rhia-Al201 200 8 1.00 0.96 0.92 0.06 0.02 0.59x 
5 I .5% Rhia-AlzOj 180 2 1.00 0.96 0.88 0.02 KO.01 0.68 
6 I .5% Rhia-Al>03 180 5 1.00 0.89 ~0.87 co.01 10.01 
7 1.5% Rh/a-Al203 190 7 1.00 0.92 0.90 0.03 0.03 0.59 
8 Rhiunsupported 200 0.3 1.00 0.73 ~0.83 10.02 co.02 0.84 
9 Rhiunsupported 200 0.5 1.00 0.62 ~0.84 co.02 co.02 

10 Rhiunsupported 220 0.9 1.00 0.73 0.88 0.88 
11 Rhiunsupported 200 0.2 1.00 0.65 0.84 0.85 
12 4% Cu>O/wAl~Oj 250 1.3 1.00 I .04 1.69 0.54 
13 4% CuzOia-AI>OJ 250 1.5 1.00 0.96 1.63 
14 4% Cu20iwA1201 250 2.7 1.00 1.04 1.47 <O.OI 10.01 
15 Cu~Olunsupported 230 1.9 1.00 1.04 1.67 co.02 co.02 

U Total conversion of propylene. 
b Starting material: 76% (E)-propene-l-d, , 24% propene-do. 
( Starting material contained predominantly PR-do and (Zl-ACR-3-d,. The ratios are corrected for the small amounts of (E)- 

ACR-3-di and apply to 100% (Zj-ACR-3-d,. 
d The E-ACR-3dr isomer is set at 1.00 and the relative amounts of Z-ACR-3d, and ACR-ld, (with attached uncertainties) are 

experimentally determined. 
e ~0.01 uncertainty for ratios in this column. 
f 20.02 uncertainty for ratios in this column. 
y This ratio was 0.5 for (Zj-ACR-3-d, repassage over the u-AI~O~ support alone. 

tially measurable for the second abstraction 
process from the ACR-doIACR-dl ratio. 
This ratio was not followed experimentally 
for the reasons mentioned in the Introduc- 
tion. 

A discrimination between H and D may 
also be evident indirectly from the relative 
amounts of the I-d, and (E + z) species. If 
kALE in Scheme 1 is large, then 2 x l-d, = 
(E + Z) regardless of kH and kD. However, 
ifkLLA=kALE=0,then2x I-d,>(E+Z) 
when kH > kD. A more extensive analysis 
of the amounts of the do and d, acrolein 
species expected from Scheme 1 for vari- 
ous rate constant values is explored in Ta- 
ble 4. This table will be used as a basis for 
interpreting the reaction data. 

Bismuth molybdate. The data in Table 3 
for the two bismuth molybdate catalysts is 
clearly explainable by Schemes Ic, d, f, or g 
(Table 4). Unfortunately, the repassage of 
(Z)-ACR-3-d, also gives essentially com- 
plete randomization so this experiment is 
not helpful in also demonstrating that ACR 

reaction randomization occurs. The equiva- 
lence of l-d1 : E : Z in this work and the ob- 
servation of a discrimination isotope effect 
from do : d, or dl : d2 ratios in previous work 
(Table 1) are mutually consistent with 
Scheme 1. 

Cuprous oxide. The results over copper 
oxide indicate that 2 x l-d, > (E + Z). This 
is only explicable by Scheme lb (i.e., reac- 
tion with stereoretention, followed by prod- 
uct randomization) or Scheme le. The rela- 
tive amounts of l-d, : E: Z can be brought 
into close agreement with the data in Table 
3 for kDikH = 0.25. This value agrees well 
with model expectations for this tempera- 
ture (14). Since control experiments with 
stereolabeled ACR-3-d, undergo nearly 
complete stereorandomization upon re- 
passage, it is not possible to determine 
whether the randomization occurs during 
or after the reaction. In contrast to the bis- 
muth molybdate results, once the v-ally1 
species is formed, it does not readily inter- 
convert to another p-ally1 isomer or revert 



360 IMACHI ET AL. 

TABLE 4 

Relative Amounts of ACR-d,,, ACR-l-d, , (E)-ACR-3-d,, and (Z)-ACR-3-d, for the Reaction Network in 
Scheme 1 

Scheme 1 kE kka k ALE Product acroleinsO 

4 l-d, E Z 

Lb 0 0 0 0 0 0 0.29 0.29 0.71 0.71 0.50 1 0.50 0 

: 0 0 +k, 0 %k, 0 0.40 0.40 1 1 1 1 1 1 

F +hLA %Ln 0 0 %k, 0 0.58 0.40 1.42 1 1 1 1 1 
g %LA %k, 0 0.40 1 1 1 
h’ 1.5OkALA 0 0 0.80 0.80 1 0.60 

n Assuming kDlkH = 0.4 except for Scheme lh. 
b Identical to Scheme la except that E undergoes complete product randomization after formation. 
c Product distribution from a steady-state approximation and kD = kH . 

back to the r-ally1 species. (It might also be 
noted that a u-ally1 species is probably not a 
unique structure for this “terminal” inter- 
mediate .) 

The results of previous Cu20 studies (at 
350°C) in Table 1 can be compared with the 
above model. Extrapolation of kD/kH = 0.25 
to the higher reaction temperature (14) pre- 
dicts a ratio of 14/86 for do/d1 from PR-l-d, 
in good agreement with the observed ratio 
of 16/84. The same procedure applied to 
both hydrogen abstraction steps predicts 
d&i = 29/71 from PR-3-d,. Still closer (ex- 
act) agreement with the observed value of 
35165 can be obtained by increasing kDlkH 
for the first abstraction to about 0.35-0.40. 
In summary, the copper oxide results in Ta- 
bles 1 and 3 appear mutually consistent 
with Scheme lb or e. 

Rhodium. The results for Rh/a-A&O3 
where 2 x I-d, < (E + 2) do not fit any 
schemes in Table 4. The low value of the l- 
dl isomer is suggestive of a minor pathway 
where symmetrization of the end carbon at- 
oms does not occur. This was also indi- 
cated by other isotopic studies (Table 1) 
and Scheme 2 was employed to analyze the 
results (4). 

In this scheme, Path A is a symmetriza- 
tion process such as the allylic mechanism 
in Scheme 1. Path B is a nonsymmetric or 
nonallylic mechanism with hydrogen loss 
and oxygen addition entirely at the methyl 
carbon such as via a hydroperoxide inter- 
mediate. Cant and Hall (4) estimated that 
0.74 < y < 0.92 while f = 0.49 + 0.04. The 
latter implies that no isotope effect occurs 
when the ally1 species further oxidizes. The 

Ct$=CH-CDD 

CH3-CH=CHD f 

\ 
' CH*=CH-CHD 

1-Y 

\ 

l-f 

H02CH2-CH=CHD 1 CHD=CH-CHO 

SCHEME 2 



Rhicu-A1203 data here are also compatible 
with such a scheme with the added infer- 
ence that randomization during reaction is 
incomplete. It does not appear possible to 
distinguish if the allylic pathway (A) or the 
nonsymmetric pathway (B) alone is the ori- 
gin of the nonrandomization. It is also ap- 
parent that considerable product random- 
ization occurred by a readsorption process 
for this system. The c-u-AlzOj support is a 
factor here since repassage of stereolabeled 
(Z)-ACR-3-d, over the support alone led to 
complete randomization. 

These results prompted experiments 
over unsupported Rh powder in an effort 
to: (1) significantly alter the relative contri- 
butions from paths A and B, (2) alter the 
relative amounts of the 1-di , E, and 2 prod- 
ucts, (3) minimize the subsequent readsorp- 
tion-randomization process. The results in 
Table 3 (runs 8-11) show that these aims 
were achieved. They indicate that Path B is 
reduced to a low level since 2 x l-d1 = E + 
Z, within experimental uncertainty. Ran- 
domization also decreases including prod- 
uct randomization as demonstrated in sepa- 
rate repassage experiments. In fact a 
kinetic analysis (cf. Appendix 1) which as- 
sumes that Path B is negligible and corrects 
for the product randomization upon read- 
sorption indicates that 76 1 10% stereoran- 
domization from the starting material takes 
place. This implies that E = 24% is ob- 
tained by a nonrandomization path while E 
= Z = 38% is also produced from a reaction 
randomization pathway. 

The data over unsupported rhodium 
which indicate that 2 x l-d, = (E + 2) 
along with the data in Table 1 which were 
used to infer (4) that no isotope effect is 
observed when the symmetric CD2-CH- 

CH2 species further oxidizes to acrolein 
present one curious possibility to rational- 
ize the data, viz., Scheme lh. This pathway 
can approximate the relative amounts of l- 
d, , E, and Z but only if kH = kD. It seems 
surprising that no discrimination isotope ef- 
fect would occur at the CHD terminus if the 
o-ally1 intermediate developed the symmet- 
ric form illustrated in 1 (Fig. 1). An alterna- 
tive which preserves the cr-ally1 concept 
would necessitate less symmetric forms 
such as 2-5. Formation of such intermedi- 
ates could conceivably occur randomly 
with little or no apparent isotope effect if 
catalyst geometry was a factor in forma- 
tion. If they did not interconvert, they 
could also proceed to acrolein with no evi- 
dent discrimination isotope effect. Cer- 
tainly, it would be worthwhile to further 
verify the absence of the isotope effect by 
determining the do/d, ratio from PR-l-d, in 
future experiments with this system. 

Species 2-5 are probably not unique as 
an explanation for the data. Intermediates 
containing oxygen might also be possibili- 
ties (for example, l OCHD-CH=CH*). In 
fact, any selection or abstraction of the H 
versus D on the CHD end of the r-ally1 
intermediate based primarily on geometric 
considerations such as proximity to the ad- 
sorption site or to the species which pro- 
motes abstraction can rationalize the ACR- 
di data over supported Rh. A more formal 
analysis of such a thesis is presented in Ap- 
pendix 2. 

Apart from the matter of the isotope ef- 
fect, it is noteworthy that (E)-PR-l-d, can 
be oxidized over unsupported Rh via a 
symmetric ally1 intermediate with some re- 
tention of the Q stereochemistry in the 
acrolein. The partial stereorandomization is 

4 5 

FIGURE 1 
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curious although not without precedence 
for catalytic oxidation of alkenes over a 
metal catalyst (8-20, IS). One explanation 
(such as in Scheme 1) postulates a competi- 
tion between the randomization kinetics of 
the ally1 species versus subsequent reactiv- 
ity to acrolein with retention. An alterna- 
tive rationale could incorporate two com- 
peting reactions at different surface sites 
(two parallel reactions with and without 
randomization, respectively). Further ex- 
periments exploring the sensitivity of this 
randomization process to temperature, cat- 
alyst properties, and other reaction condi- 
tions may shed some light on this question 
but systematically exploring this for the Rh 
system appears quite challenging. 

SUMMARY 

Oxidations of (E)-PR-l-d, over bismuth 
molybdate, copper oxide, and unsupported 
Rh catalysts all indicated that a symmetri- 
zation process occurs as expected for the 
formation of the r-ally1 intermediate. The 
bismuth molybdate results (both the loss 
of stereochemistry and dl(E + Z) ratio) 
were consistent with conversion of the 7~- 
ally1 to a o-ally1 intermediate which rapidly 
interconverts (*CHD-CH=CH2 fi: 
CHD=CH-*CHz). The copper oxide 
results can be explained similarly except 
that the u-ally1 intermediates once formed 
do not interconvert. Oxidation over unsup- 
ported Rh suggest that the r-ally1 interme- 
diate might convert to a o-ally1 or another 
intermediate; whatever the detailed fate of 
the ally1 intermediate may be, it further oxi- 
dizes with some retention of the original 
stereochemistry but without a discrimina- 
tion isotope effect at that stage. Over a sup- 
ported Rh catalyst a minor nonallylic path- 
way is also evident. 

APPENDIX 1 

The Rh/a-Al;?03 data can be analyzed via 
Scheme 2 to estimate the relative participa- 
tion of Paths A and B and randomization 
limits in these paths. This utilizes the iso- 
topic ratios in Table 3 for runs 4, 5, and 7 

including the ACR-3-d, repassage data and 
employs the relationships 

CH$JHCDO l-d, 
’ = CHDCHCHO = E+Z 

0.5 Yf 
= YU - .fl + (1 - Y) 

Z = !j (reaction only) 

Y(l - fka + (1 - Ykb 

= y(1 - f)(l - ra) + (1 - y)(l - rb) 

F = g (overall) = 
zr, + (1 - Y,) 
Z(l - r,) + rc’ 

where fraction of acrolein randomization 
by Path A = 2(1 - ra), that by Path B = 2(1 
- rb), and that by readsorption = 2( 1 - r,). 
This implies 

E(Path A) 
ra = (E + Z)(Path A) 

(1 1 ra 2 0.5) 

and similarly for rb and r, . If f is set at 0.5 
(4) the equations contain four rate quanti- 
ties (y,ra,b,c) and three experimental ratios 
(S,F,rJ. From these values offand S, y can 
be obtained. From rc and F, Z can be ob- 
tained. With I, y, andf fixed, the relation- 
ship between ra and rb can be examined but 
not unequivocally separated. It becomes 
apparent, when experimental uncertainty is 
considered, that the data are consistent 
with ra = OS-O.7 while rb varies between 1 
and 0.5. The data are very unrestrictive in 
the range of possible values for rb since this 
pathway was quite minor for these runs (y 
= 0.95-0.97). 

The same analysis for the unsupported- 
Rh data shows it to be consistent with 
y(ave) = 1.00 +- 0.02 so that Path B has 
been reduced to a negligible level. The av- 
erage value of ra for runs 8, 10, and 11 is 
0.62 2 0.05 (76 -+ 10% randomization from 
the starting material). While this is consis- 
tent with the rough estimates of ra over Rh/ 
a-Al203 , that figure still does not allow 
much insight to be obtained on whether 
Path B occurs with randomization or reten- 
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TABLE 5 

Abstraction of Inner versus Outer Hydrogen; Relative Amounts of ACR-d, Products from 7r-Allylic-d, 
Isomers” 

“\ 7 n(Z) = c-c 

0’ ---- “&-” 

/ 
H 

H(D) lossh do’ l-d, E 2 

i(inner) 0 I I 0 i’(inner) I 0 0 1 
o(outer) 1 0 1 0 o’(outer) 0 1 0 1 

(i See Appendix 2. 
b Inner loss occurs from the Hz (or HD) side; outer loss occurs from the Hz (or H2D) side. 
c ka = kD apart from geometric effects. 

tion over that catalyst. The value of Ye and 
associated data is still not sufficiently accu- 
rate or sensitive enough to Path B to enable 
a useful estimate of Yb to be made. 

APPENDIX 2 

A geometrically influenced discrimina- 
tion between H and D from a r-allylic spe- 
cies will be considered. This could arise if 
the (E)-allyl-l-d, intermediate in Scheme 1 
or Table 5 preferentially loses the next H 
(or D) from the Hz side (hereafter called the 
inner side) rather than the HzD site (hereaf- 
ter called the outer side) or vice versa. The 
geometric discrimination might be associ- 
ated with proximity to the adsorption site 
or to the species which promotes the ab- 
straction. Apart from this geometric con- 
sideration, kdkH = 1. The four basic pro- 
cesses that can arise if stereo ran- 
domization also occurs in the (E)-r-ally1 
species before abstraction are listed in Ta- 
ble 5. 

The unsupported-Rh data can be repro- 
duced if stereo randomization of the (I+~- 
ally1 species to (Z)-r-ally1 competes with 
the second abstraction. For example, 1.5(i 
+ o) + (i’ + 0’) results in d, : E: Z = 
2.5 : 3 : 2 close to observed ratios. It is also 
interesting that the d, distribution over 
CuzO in Table 3 can be approximated by 
3.1 (i + o) followed by E, Z product equili- 
bration in a later readsorption step. How- 

ever, such a scheme would also predict doi 
dl = 30/70 starting with (,!!I)-PR-I-d, in much 
poorer agreement with Voge and Adams’ 
results (Table 1) than using Scheme lb (or 
le). The bismuth molybdate results in Table 
3 can also be accommodated by combina- 
tions from Table 5 but the results in Table 1 
are not reconcilable, especially the data 
from the CD2CHCH2 intermediate. Scheme 
1 clearly is superior as a description of the 
Bi,YMoTO, system. 
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